References

Below are the references used in each section of the portal under "Overview"

Overview

Contaminants

Anthropogenic contaminants

Salinity
  • Alfarrah, N., & Walraevens, K. (2018). Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water, 10(2)(Groundwater Resources and Salt Water Intrusion in a Changing Environment), 143. https://doi.org/10.3390/w10020143
  • Foster, S., Pulido-Bosch, A., Vallejos, Á., Molina, L., Llop, A., & MacDonald, A. M. (2018). Impact of irrigated agriculture on groundwater-recharge salinity: a major sustainability concern in semi-arid regions. Hydrogeology Journal, 26(8), 2781–2791. https://doi.org/10.1007/s10040-018-1830-2
  • Hussain, M. S., Abd-Elhamid, H. F., Javadi, A. A., & Sherif, M. M. (2019). Management of Seawater Intrusion in Coastal Aquifers: A Review. Water, 11(12)(Advances in Groundwater and Surface Water Monitoring and Management), 2467. https://doi.org/10.3390/w11122467
  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766. https://doi.org/10.1038/ngeo2791
  • Mirzavand, M., Ghasemieh, H., Sadatinejad, S. J., & Bagheri, R. (2020). An overview on source, mechanism and investigation approaches in groundwater salinization studies. International Journal of Environmental Science and Technology, 17(4), 2463–2476. https://doi.org/10.1007/s13762-020-02647-7
  • Nogueira, G., Stigter, T. Y., Zhou, Y., Mussa, F., & Juizo, D. (2019). Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Science of The Total Environment, 661, 723–736. https://doi.org/10.1016/j.scitotenv.2018.12.343
  • Post, V. E. A., Eichholz, M., & Brentführer, R. (2018). Groundwater Management in Coastal Zones. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). https://www.bgr.bund.de/EN/Themen/Wasser/Produkte/Downloads/groundwater_management_in_coastal_zones.pdf?__blob=publicationFile&v=3;
  • Zhang, Z., Hu, H., Tian, F., Yao, X., & Sivapalan, M. (2014). Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China. Hydrol. Earth Syst. Sci., 18(10), 3951–3967. https://doi.org/10.5194/hess-18-3951-2014.
Nitrate
  • Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., & Binley, A. M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8(1), 1416. https://doi.org/10.1038/s41467-017-01321-w
  • Boy-Roura, M., Nolan, B. T., Menció, A., & Mas-Pla, J. (2013). Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). Journal of Hydrology, 505, 150–162. https://doi.org/10.1016/j.jhydrol.2013.09.048
  • Fennessy, M. S., & Cronk, J. K. (1997). The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate. Critical Reviews in Environmental Science and Technology, 27(4), 285–317. https://doi.org/10.1080/10643389709388502;
  • Foster, S., & Crease, R. I. (1974). Nitrate pollution of Chalk groundwater in East Yorkshire — a hydrogeological appraisal. Journal of the Institute of Water Engineers, 28, 178–194; Foster, S., & Young, C. P. (1980). Groundwater contamination due to agricultural land-use practices in the United Kingdom. UNESCO-IHP Studies and Reports in Hydrogeology Series, 30(Aquifer Contamination & Protection), 262–282;
  • Foster, S., & Custodio, E. (2019). Groundwater Resources and Intensive Agriculture in Europe – Can Regulatory Agencies Cope with the Threat to Sustainability? Water Resources Management, 33(6), 2139–2151. https://doi.org/10.1007/s11269-019-02235-6;
  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science, 320(5878), 889 LP – 892. https://doi.org/10.1126/science.1136674
  • Howden, N. J. K., Burt, T. P., Worrall, F., Whelan, M. J., & Bieroza, M. (2010). Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): are increases irreversible? Hydrological Processes, 24(18), 2657–2662. https://doi.org/10.1002/hyp.7835
  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675–678. https://doi.org/10.1289/ehp.00108675
  • Rhee, G.-Y. (1978). Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake 1. Limnology and Oceanography, 23(1), 10–25. https://doi.org/10.4319/lo.1978.23.1.0010
  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42(16), 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020;
  • Spalding, R. F., & Exner, M. E. (1993). Occurrence of Nitrate in Groundwater—A Review. Journal of Environmental Quality, 22(3), 392–402. https://doi.org/10.2134/jeq1993.00472425002200030002x
  • Strebel, O., Duynisveld, W. H. M., & Böttcher, J. (1989). Nitrate pollution of groundwater in western Europe. Agriculture, Ecosystems & Environment, 26(3), 189–214. https://doi.org/10.1016/0167-8809(89)90013-3
  • USEPA. (1987). Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. Washington, DC, United States Environmental Protection Agency, Office of Drinking Water.
  • Wang, L., Butcher, A. S., Stuart, M. E., Gooddy, D. C., & Bloomfield, J. P. (2013). The nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zone. Environmental Geochemistry and Health, 35(5), 667–681. https://doi.org/10.1007/s10653-013-9550-y
  • Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., Skirvin, D., Naden, P. S., Collins, A. L., & Ascott, M. J. (2016). The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Science of The Total Environment, 542, 694–705. https://doi.org/10.1016/j.scitotenv.2015.10.127; and 
  • Whitehead, P. G., & Hornberger, G. M. (1984). Modelling algal behaviour in the river thames. Water Research, 18(8), 945–953. https://doi.org/10.1016/0043-1354(84)90244-6.
Microbiological contamination
  • Anderson, M. E., & Sobsey, M. D. (2006). Detection and occurrence of antimicrobially resistant E. coli in groundwater on or  near swine farms in eastern North Carolina. Water Science and Technology : A Journal of the International Association on Water  Pollution Research, 54(3), 211–218. https://doi.org/10.2166/wst.2006.471
  • Back, J. O., Rivett, M. O., Hinz, L. B., Mackay, N., Wanangwa, G. J., Phiri, O. L., Songola, C. E., Thomas, M. A. S., Kumwenda, S., Nhlema, M., Miller, A. V. M., & Kalin, R. M. (2018). Risk assessment to groundwater of pit latrine rural sanitation policy in developing  country settings. The Science of the Total Environment, 613–614, 592–610. https://doi.org/10.1016/j.scitotenv.2017.09.071
  • Bain, R., Cronk, R., Wright, J., Yang, H., Slaymaker, T., & Bartram, J. (2014). Fecal contamination of drinking-water in low- and middle-income countries: a  systematic review and meta-analysis. PLoS Medicine, 11(5), e1001644. https://doi.org/10.1371/journal.pmed.1001644
  • Borchardt, M. A., Bertz, P. D., Spencer, S. K., & Battigelli, D. A. (2003). Incidence of enteric viruses in groundwater from household wells in Wisconsin. Applied and Environmental Microbiology, 69(2), 1172–1180. https://doi.org/10.1128/aem.69.2.1172-1180.2003;
  • Chique, C., Hynds, P. D., Andrade, L., Burke, L., Morris, D., Ryan, M. P., & O’Dwyer, J. (2020). Cryptosporidium spp. in groundwater supplies intended for human consumption - A  descriptive review of global prevalence, risk factors and knowledge gaps. Water Research, 176, 115726. https://doi.org/10.1016/j.watres.2020.115726
  • Ferguson, A. S., Layton, A. C., Mailloux, B. J., Culligan, P. J., Williams, D. E., Smartt, A. E., Sayler, G. S., Feighery, J., McKay, L. D., Knappett, P. S. K., Alexandrova, E., Arbit, T., Emch, M., Escamilla, V., Ahmed, K. M., Alam, M. J., Streatfield, P. K., Yunus, M., & van Geen, A. (2012). Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater. The Science of the Total Environment, 431, 314–322. https://doi.org/10.1016/j.scitotenv.2012.05.060
  • Graham, J. P., & Polizzotto, M. L. (2013). Pit Latrines and Their Impacts on Groundwater Quality: A Systematic Review. Environmental Health Perspectives, 121(5), 521–530. https://doi.org/10.1289/ehp.1206028;
  • Howard, G., Pedley, S., Barrett, M., Nalubega, M., & Johal, K. (2003). Risk factors contributing to microbiological contamination of shallow groundwater in  Kampala, Uganda. Water Research, 37(14), 3421–3429. https://doi.org/10.1016/S0043-1354(03)00235-5;
  • Hunt, R. J., Borchardt, M. A., Richards, K. D., & Spencer, S. K. (2010). Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses. Environmental Science & Technology, 44(20), 7956–7963. https://doi.org/10.1021/es100698m
  • Hynds, P. D., Thomas, M. K., & Pintar, K. D. M. (2014). Contamination of Groundwater Systems in the US and Canada by Enteric Pathogens, 1990–2013: A Review and Pooled-Analysis. PLOS ONE, 9(5), e93301. https://doi.org/10.1371/journal.pone.0093301;
  • Kostyla, C., Bain, R., Cronk, R., & Bartram, J. (2015). Seasonal variation of fecal contamination in drinking water sources in developing  countries: a systematic review. The Science of the Total Environment, 514, 333–343. https://doi.org/10.1016/j.scitotenv.2015.01.018;
  • Lapworth, D. J., Nkhuwa, D. C. W., Okotto-Okotto, J., Pedley, S., Stuart, M. E., Tijani, M. N., & Wright, J. (2017). Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health. Hydrogeology Journal, 25(4), 1093–1116. https://doi.org/10.1007/s10040-016-1516-6;
  • Lapworth, D. J., MacDonald, A. M., Kebede, S., Owor, M., Chavula, G., Fallas, H., Wilson, P., Ward, J. S. T., Lark, M., Okullo, J., Mwathunga, E., Banda, S., Gwengweya, G., Nedaw, D., Jumbo, S., Banks, E., Cook, P., & Casey, V. (2020). Drinking water quality from rural handpump-boreholes in Africa. Environmental Research Letters, 15(6), 64020. https://doi.org/10.1088/1748-9326/ab8031;
  • Macler, B. A., & Merkle, J. C. (2000). Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8, 29–40;  Murphy, H. M., Prioleau, M. D., Borchardt, M. A., & Hynds, P. D. (2017). Review: Epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeology Journal, 25(4), 981–1001. https://doi.org/10.1007/s10040-017-1543-y;
  • Nanzaluka, F. H., Davis, W. W., Mutale, L., Kapaya, F., Sakubita, P., Langa, N., Gama, A., N’cho, H. S., Malambo, W., Murphy, J., Blackstock, A., Mintz, E., Riggs, M., Mukonka, V., Sinyange, N., Yard, E., & Brunkard, J. (2020). Risk Factors for Epidemic Cholera in Lusaka, Zambia-2017. The American Journal of Tropical Medicine and Hygiene, 103(2), 646–651. https://doi.org/10.4269/ajtmh.20-0089
  • Parker, A. H., Youlten, R., Dillon, M., Nussbaumer, T., Carter, R. C., Tyrrel, S. F., & Webster, J. (2010). An assessment of microbiological water quality of six water source categories in  north-east Uganda. Journal of Water and Health, 8(3), 550–560. https://doi.org/10.2166/wh.2010.128
  • Pedley, S., & Howard, G. (1997). The public health implications of microbiological contamination of groundwater. Quarterly Journal of Engineering Geology, 30, 179–188;
  • Ravenscroft, P., Mahmud, Z. H., Islam, M. S., Hossain, A. K. M. Z., Zahid, A., Saha, G. C., Zulfiquar Ali, A. H. M., Islam, K., Cairncross, S., Clemens, J. D., & Islam, M. S. (2017). The public health significance of latrines discharging to groundwater used for drinking. Water Research, 124, 192–201. https://doi.org/10.1016/j.watres.2017.07.049
  • Sapkota, A. R., Curriero, F. C., Gibson, K. E., & Schwab, K. J. (2007). Antibiotic-resistant enterococci and fecal indicators in surface water and  groundwater impacted by a concentrated Swine feeding operation. Environmental Health Perspectives, 115(7), 1040–1045. https://doi.org/10.1289/ehp.9770
  • Sorensen, J. P. R., Lapworth, D. J., Read, D. S., Nkhuwa, D. C. W., Bell, R. A., Chibesa, M., Chirwa, M., Kabika, J., Liemisa, M., & Pedley, S. (2015). Tracing enteric pathogen contamination in sub-Saharan African groundwater. Science of The Total Environment, 538, 888–895. https://doi.org/10.1016/j.scitotenv.2015.08.119
  • Sorensen, J. P. R., Sadhu, A., Sampath, G., Sugden, S., Dutta Gupta, S., Lapworth, D. J., Marchant, B. P., & Pedley, S. (2016). Are sanitation interventions a threat to drinking water supplies in rural India? An  application of tryptophan-like fluorescence. Water Research, 88, 923–932. https://doi.org/10.1016/j.watres.2015.11.006
  • Stokdyk, J. P., Firnstahl, A. D., Walsh, J. F., Spencer, S. K., de Lambert, J. R., Anderson, A. C., Rezania, L.-I. W., Kieke, B. A., & Borchardt, M. A. (2020). Viral, bacterial, and protozoan pathogens and fecal markers in wells supplying groundwater to public water systems in Minnesota, USA. Water Research, 178, 115814. https://doi.org/10.1016/j.watres.2020.115814;
  • Szekeres, E., Chiriac, C. M., Baricz, A., Szőke-Nagy, T., Lung, I., Soran, M.-L., Rudi, K., Dragos, N., & Coman, C. (2018). Investigating antibiotics, antibiotic resistance genes, and microbial contaminants  in groundwater in relation to the proximity of urban areas. Environmental Pollution (Barking, Essex : 1987), 236, 734–744. https://doi.org/10.1016/j.envpol.2018.01.107
  • WHO. (2019). Drinking-water. https://www.who.int/news-room/fact-sheets/detail/drinking-water; and
  • Wright, J. A., Cronin, A., Okotto-Okotto, J., Yang, H., Pedley, S., & Gundry, S. W. (2013). A spatial analysis of pit latrine density and groundwater source contamination. Environmental Monitoring and Assessment, 185(5), 4261–4272. https://doi.org/10.1007/s10661-012-2866-8.
Manufactured organic contaminants
  • Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and  occurrence. Environmental Pollution (Barking, Essex : 1987), 163, 287–303. https://doi.org/10.1016/j.envpol.2011.12.034.
Pesticides
  • Beitz, H., Schmidt, H., & Herzel, F. (1994). Occurrence, Toxicological and Ecotoxicological Significance of Pesticides in Groundwater and Surface Water. In Pesticides in Ground and Surface Water (pp. 1–56). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79104-8_1
  • Chilton, P. J., Lawrence, A. R., & Stuart, M. E. (1998). Pesticides in groundwater: some preliminary results from recent research in temperate and tropical environments. Geological Society, London, Special Publications, 128(1), 333 LP – 345. https://doi.org/10.1144/GSL.SP.1998.128.01.23
  • Foster, S., & Custodio, E. (2019). Groundwater Resources and Intensive Agriculture in Europe – Can Regulatory Agencies Cope with the Threat to Sustainability? Water Resources Management, 33(6), 2139–2151. https://doi.org/10.1007/s11269-019-02235-6
  • Kolpin, D. W., Barbash, J. E., & Gilliom, R. J. (1998). Occurrence of pesticides in shallow groundwater of the United States: initial results from the National Water-Quality Assessment program. Environmental Science & Technology, 32(5), 558–566. https://doi.org/10.1021/es970412g
  • Reemtsma, T., Alder, L., & Banasiak, U. (2013). Emerging pesticide metabolites in groundwater and surface water as determined by the  application of a multimethod for 150 pesticide metabolites. Water Research, 47(15), 5535–5545. https://doi.org/10.1016/j.watres.2013.06.031
  • Vonberg, D., Vanderborght, J., Cremer, N., Pütz, T., Herbst, M., & Vereecken, H. (2014). 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Research, 50, 294–306. https://doi.org/10.1016/j.watres.2013.10.032
  • Wang, A., Hu, X., Wan, Y., Mahai, G., Jiang, Y., Huo, W., Zhao, X., Liang, G., He, Z., Xia, W., & Xu, S. (2020). A nationwide study of the occurrence and distribution of atrazine and its degradates in tap water and groundwater in China: Assessment of human exposure potential. Chemosphere, 252, 126533. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126533; and 
  • Lapworth, D. J., & Gooddy, D. C. (2006). Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environmental Pollution (Barking, Essex : 1987), 144(3), 1031–1044. https://doi.org/10.1016/j.envpol.2005.12.055.
Non-aqueous phase liquids
  • Kent, B., & Mosquera, G. C. B. (2001). Remediation of NAPL-contaminated aquifers: is the cure worth the cost? Journal of Environmental Science and Health, Part A, 36(8), 1559–1569. https://doi.org/10.1081/ESE-100105731;
  • Mackay, D. M., & Cherry, J. A. (1989). Groundwater contamination: pump-and-treat remediation. Environmental Science & Technology, 23(6), 630–636. https://doi.org/10.1021/es00064a001;
  • Mayer, A. S., & Hassanizadeh, S. M. (2005). Soil and Groundwater Contamination: Nonaqueous Phase Liquids–Principles and Observations, Volume 17. American Geophysical Union. https://doi.org/10.1029/WM017;
  • Pankow, J. F., & Cherry, J. A. (1996). Dense Chlorinated Solvents and other DNAPLs in Groundwater: History, Behavior, and Remediation. Waterloo Press, Oregon; and
  • Rivett, M. O., Wealthall, G. P., Dearden, R. A., & McAlary, T. A. (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound  (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, 123(3–4), 130–156. https://doi.org/10.1016/j.jconhyd.2010.12.013.
Organic contaminants of emerging concern
  • Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: A review of sources, fate and  occurrence. Environmental Pollution (Barking, Essex : 1987), 163, 287–303. https://doi.org/10.1016/j.envpol.2011.12.034
  • Stuart, M. E., Lapworth, D., Crane, E., & Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater. The Science of the Total Environment, 416, 1–21. https://doi.org/10.1016/j.scitotenv.2011.11.072
  • Re, V. (2019). Shedding light on the invisible: addressing the potential for groundwater contamination by plastic microfibers. Hydrogeology Journal, 27(7), 2719–2727. https://doi.org/10.1007/s10040-019-01998-x; and 
  • Panno, S. V, Kelly, W. R., Scott, J., Zheng, W., McNeish, R. E., Holm, N., Hoellein, T. J., & Baranski, E. L. (2019). Microplastic Contamination in Karst Groundwater Systems. Groundwater, 57(2), 189–196. https://doi.org/10.1111/gwat.12862.

Naturally occurring contaminants

Arsenic
Fluoride
  • Demelash, H., Beyene, A., Abebe, Z., & Melese, A. (2019). Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: systematic review and meta-analysis. BMC Public Health, 19(1), 1298. https://doi.org/10.1186/s12889-019-7646-8
  • Edmunds, W. M., & Smedley, P. L. (2013). Fluoride in Natural Waters. In Selinus O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_13;
  • Kut, K. M. K., Sarswat, A., Srivastava, A., Pittman, C. U., & Mohan, D. (2016). A review of fluoride in african groundwater and local remediation methods. Groundwater for Sustainable Development, 2–3, 190–212. https://doi.org/10.1016/j.gsd.2016.09.001; and 
  • Podgorski, J., Labhasetwar, P., Saha, D., & Berg, M. (2018). Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Environmental Science & Technology, 52(17), 9889–9898. https://doi.org/10.1021/acs.est.8b01679.
Iron and manganese
 
Chromium
Radioactive substances
  • Ajayi, O. S., & Owolabi, T. P. (2008). Determination of natural radioactivity in drinking water in private dug wells in  Akure, Southwestern Nigeria. Radiation Protection Dosimetry, 128(4), 477–484. https://doi.org/10.1093/rpd/ncm429
  • Arabi, A. M. El, Ahmed, N. K., & Din, K. S. (2006). Natural radionuclides and dose estimation in natural water resources from Elba  protective area, Egypt. Radiation Protection Dosimetry, 121(3), 284–292. https://doi.org/10.1093/rpd/ncl022;
  • Dragović, S. D., Janković-Mandić, L. J., Dragović, R. M., Đorđević, M. M., & Đokić, M. M. (2012). Spatial distribution of the 226Ra activity concentrations in well and spring waters in Serbia and their relation to geological formations. Journal of Geochemical Exploration, 112, 206–211. https://doi.org/10.1016/j.gexplo.2011.08.013;
  • Fujii, R., & Swain, W. C. (1995). Areal distribution of selected trace elements, salinity, and major ions in shallow ground water, Tulare Basin, Southern San Joaquin Valley, California. In Water-Resources Investigations Report. https://doi.org/10.3133/wri954048;
  • Gascoyne, M. (2004). Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba. Applied Geochemistry, 19(4), 519–560. https://doi.org/10.1016/S0883-2927(03)00155-0
  • Herczeg, A. L., James Simpson, H., Anderson, R. F., Trier, R. M., Mathieu, G. G., & Deck, B. L. (1988). Uranium and radium mobility in groundwaters and brines within the delaware basin, Southeastern New Mexico, U.S.A. Chemical Geology: Isotope Geoscience Section, 72(2), 181–196. https://doi.org/10.1016/0168-9622(88)90066-8
  • Kiro, Y., Weinstein, Y., Starinsky, A., & Yechieli, Y. (2015). Application of radon and radium isotopes to groundwater flow dynamics: An example from the Dead Sea. Chemical Geology, 411, 155–171. https://doi.org/10.1016/j.chemgeo.2015.06.014;
  • Kitto, M. E., Parekh, P. P., Torres, M. A., & Schneider, D. (2005). Radionuclide and chemical concentrations in mineral waters at Saratoga Springs, New York. Journal of Environmental Radioactivity, 80(3), 327–339. https://doi.org/10.1016/j.jenvrad.2004.10.006
  • Post, V. E. A., Vassolo, S. I., Tiberghien, C., Baranyikwa, D., & Miburo, D. (2017). Weathering and evaporation controls on dissolved uranium concentrations in groundwater - A case study from northern Burundi. The Science of the Total Environment, 607–608, 281–293. https://doi.org/10.1016/j.scitotenv.2017.07.006
  • Seiler, R. L., Stillings, L. L., Cutler, N., Salonen, L., & Outola, I. (2011). Biogeochemical factors affecting the presence of 210Po in groundwater. Applied Geochemistry, 26(4), 526–539. https://doi.org/10.1016/j.apgeochem.2011.01.011
  • Smith, B., Hutchins, M. G., Powell, J. H., Talbot, D., Trick, J. K., Gedeon, R., Amro, H., Kilani, S., Constantinou, G., Afrodisis, S., & Constantinou, C. (2000). The distribution of natural radioelements in ground waters and post-Cretaceous sediments from the southern Mediterranean margin. In I. Panayides, C. Xenophontos, & J. Malpas (Eds.), Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean (pp. 355–363).
  • Ministry of Agriculture and Natural Resources Geological Survey Department, Republic of Cyprus; Vengosh, A., Hirschfeld, D., Vinson, D., Dwyer, G., Raanan, H., Rimawi, O., Al-Zoubi, A., Akkawi, E., Marie, A., Haquin, G., Zaarur, S., & Ganor, J. (2009). High Naturally Occurring Radioactivity in Fossil Groundwater from the Middle East. Environmental Science & Technology, 43(6), 1769–1775. https://doi.org/10.1021/es802969r; and
  • WHO. (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/.

Challenges and opportunities

Methodological challenges

  • Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., & Binley, A. M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8(1), 1416. https://doi.org/10.1038/s41467-017-01321-w.
  • Fetter, C. W., Boving, T., & Kreamer, D. K. (2018). Contaminant Hydrogeology, 3rd Edition. Waveland Press;
  • Misstear, B., Banks, D., & Clark, L. (2017). Water Wells and Boreholes, 2nd Edition; and
  • Ouedraogo, I., Defourny, P., & Vanclooster, M. (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal, 27(3), 1081–1098. https://doi.org/10.1007/s10040-018-1900-5.

Mandate and use of national data sources

The challenge of climate change

  • Balbus, J. M., Boxall, A. B. A., Fenske, R. A., McKone, T. E., & Zeise, L. (2013). Implications of global climate change for the assessment and management of human  health risks of chemicals in the natural environment. Environmental Toxicology and Chemistry, 32(1), 62–78. https://doi.org/10.1002/etc.2046;
  • Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater--A UK perspective. The Science of the Total Environment, 369(1–3), 163–177. https://doi.org/10.1016/j.scitotenv.2006.05.019
  • Brouwer, R., Akter, S., Brander, L., & Haque, E. (2007). Socioeconomic Vulnerability and Adaptation to Environmental Risk: A Case Study of Climate Change and Flooding in Bangladesh. Risk Analysis, 27(2), 313–326. https://doi.org/10.1111/j.1539-6924.2007.00884.x
  • Burri, N. M., Weatherl, R., Moeck, C., & Schirmer, M. (2019). A review of threats to groundwater quality in the anthropocene. The Science of the Total Environment, 684, 136–154. https://doi.org/10.1016/j.scitotenv.2019.05.236
  • Butscher, C., & Huggenberger, P. (2009). Modeling the Temporal Variability of Karst Groundwater Vulnerability, with Implications for Climate Change. Environmental Science & Technology, 43(6), 1665–1669. https://doi.org/10.1021/es801613g;
  • Comte, J.-C., Join, J.-L., Banton, O., & Nicolini, E. (2014). Modelling the response of fresh groundwater to climate and vegetation changes in coral islands. Hydrogeology Journal, 22(8), 1905–1920. https://doi.org/10.1007/s10040-014-1160-y
  • Cuthbert, M. O., Taylor, R. G., Favreau, G., Todd, M. C., Shamsudduha, M., Villholth, K. G., MacDonald, A. M., Scanlon, B. R., Kotchoni, D. O. V, Vouillamoz, J.-M., Lawson, F. M. A., Adjomayi, P. A., Kashaigili, J., Seddon, D., Sorensen, J. P. R., Ebrahim, G. Y., Owor, M., Nyenje, P. M., Nazoumou, Y., … Kukuric, N. (2019). Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature, 572(7768), 230–234. https://doi.org/10.1038/s41586-019-1441-7;
  • Delpla, I., Jung, A.-V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225–1233. https://doi.org/10.1016/j.envint.2009.07.001;
  • Delcour, I., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68, 7–15;  
  • Howard, G., Pedley, S., Barrett, M., Nalubega, M., & Johal, K. (2003). Risk factors contributing to microbiological contamination of shallow groundwater in  Kampala, Uganda. Water Research, 37(14), 3421–3429. https://doi.org/10.1016/S0043-1354(03)00235-5
  • Hugo, G. (2011). Future demographic change and its interactions with migration and climate change. Global Environmental Change, 21, S21–S33. https://doi.org/10.1016/j.gloenvcha.2011.09.008
  • Hunter, P. R. (2003). Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94(s1), 37–46. https://doi.org/10.1046/j.1365-2672.94.s1.5.x;
  • Khan, A. E., Ireson, A., Kovats, S., Mojumder, S. K., Khusru, A., Rahman, A., & Vineis, P. (2011). Drinking Water Salinity and Maternal Health in Coastal Bangladesh: Implications of  Climate Change. Environmental Health Perspectives, 119(9), 1328–1332. https://doi.org/10.1289/ehp.1002804;
  • Levy, K., Woster, A. P., Goldstein, R. S., & Carlton, E. J. (2016). Untangling the Impacts of Climate Change on Waterborne Diseases: a Systematic Review  of Relationships between Diarrheal Diseases and Temperature, Rainfall, Flooding, and Drought. Environmental Science & Technology, 50(10), 4905–4922. https://doi.org/10.1021/acs.est.5b06186
  • McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., & Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11(1), 1279. https://doi.org/10.1038/s41467-020-14946-1
  • McGill, B. M., Altchenko, Y., Hamilton, S. K., Kenabatho, P. K., Sylvester, S. R., & Villholth, K. G. (2019). Complex interactions between climate change, sanitation, and groundwater quality: a case study from Ramotswa, Botswana. Hydrogeology Journal, 27(3), 997–1015. https://doi.org/10.1007/s10040-018-1901-4;
  • McLeman, R. A., & Hunter, L. M. (2010). Migration in the context of vulnerability and adaptation to climate change: insights from analogues. Wiley Interdisciplinary Reviews. Climate Change, 1(3), 450–461. https://doi.org/10.1002/wcc.51;
  • Oude Essink, G. H. P., van Baaren, E. S., & de Louw, P. G. B. (2010). Effects of climate change on coastal groundwater systems: A modeling study in the Netherlands. Water Resources Research, 46(10). https://doi.org/10.1029/2009WR008719
  • Post, V. E. A., Eichholz, M., & Brentführer, R. (2018). Groundwater Management in Coastal Zones. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). https://www.bgr.bund.de/EN/Themen/Wasser/Produkte/Downloads/groundwater_management_in_coastal_zones.pdf?__blob=publicationFile&v=3
  • Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). The future intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48–52. https://doi.org/10.1038/nclimate3168;
  • Ranjan, P., Kazama, S., & Sawamoto, M. (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change, 16(4), 388–399. https://doi.org/10.1016/j.gloenvcha.2006.03.006
  • Redshaw, C. H., Stahl-Timmins, W. M., Fleming, L. E., Davidson, I., & Depledge, M. H. (2013). Potential Changes in Disease Patterns and Pharmaceutical Use in Response to Climate Change. Journal of Toxicology and Environmental Health, Part B, 16(5), 285–320. https://doi.org/10.1080/10937404.2013.802265;
  • Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
  • Schreider, S. Y., Smith, D. I., & Jakeman, A. J. (2000). Climate Change Impacts on Urban Flooding. Climatic Change, 47(1), 91–115. https://doi.org/10.1023/A:1005621523177
  • Sorensen, J. P. R., Lapworth, D. J., Read, D. S., Nkhuwa, D. C. W., Bell, R. A., Chibesa, M., Chirwa, M., Kabika, J., Liemisa, M., & Pedley, S. (2015). Tracing enteric pathogen contamination in sub-Saharan African groundwater. Science of The Total Environment, 538, 888–895. https://doi.org/10.1016/j.scitotenv.2015.08.119
  • Stuart, M. E., Gooddy, D. C., Bloomfield, J. P., & Williams, A. T. (2011). A review of the impact of climate change on future nitrate concentrations in  groundwater of the UK. The Science of the Total Environment, 409(15), 2859–2873. https://doi.org/10.1016/j.scitotenv.2011.04.016
  • Tacoli, C. (2009). Crisis or adaptation? Migration and climate change in a context of high mobility. Environment and Urbanization, 21(2), 513–525. https://doi.org/10.1177/0956247809342182
  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A. M., Fan, Y., Maxwell, R. M., Yechieli, Y., … Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329. https://doi.org/10.1038/nclimate1744; and
  • Ward, J. S. T., Lapworth, D. J., Read, D. S., Pedley, S., Banda, S. T., Monjerezi, M., Gwengweya, G., & MacDonald, A. M. (2021). Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. Science of The Total Environment, 750, 141284. https://doi.org/10.1016/j.scitotenv.2020.141284

Earth observations

  • Amini, M., Abbaspour, K. C., Berg, M., Winkel, L., Hug, S. J., Hoehn, E., Yang, H., & Johnson, C. A. (2008). Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater. Environmental Science & Technology, 42(10), 3669–3675. https://doi.org/10.1021/es702859e
  • Anning, D. W., Paul, A. P., McKinney, T. S., Huntington, J. M., Bexfield, L. M., & Thiros, S. A. (2012). Predicted nitrate and arsenic concentrations in basin-fill aquifers of the southwestern United States. https://pubs.usgs.gov/sir/2012/5065/pdf/sir20125065.pdf
  • Ayotte, J. D., Medalie, L., Qi, S. L., Backer, L. C., & Nolan, B. T. (2017). Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environmental Science & Technology, 51(21), 12443–12454. https://doi.org/10.1021/acs.est.7b02881
  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766. https://doi.org/10.1038/ngeo2791
  • Podgorski, J., Eqani, S., Khanam, T., Ullah, R., Shen, H., & Berg, M. (2017). Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 3(8), e1700935. https://doi.org/10.1126/sciadv.1700935
  • Podgorski, J., Labhasetwar, P., Saha, D., & Berg, M. (2018). Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Environmental Science & Technology, 52(17), 9889–9898. https://doi.org/10.1021/acs.est.8b01679
  • Podgorski, J., & Berg, M. (2020). Global threat of arsenic in groundwater. Science, 368(6493), 845 LP – 850. https://doi.org/10.1126/science.aba1510
  • Podgorski, J., Wu, R., Chakravorty, B., & Polya, D. A. (2020). Groundwater Arsenic Distribution in India by Machine Learning Geospatial Modeling. International Journal of Environmental Research and Public Health, 17(19), 7119;
  • Poulin, C., Peletz, R., Ercumen, A., Pickering, A. J., Marshall, K., Boehm, A. B., Khush, R., & Delaire, C. (2020). What Environmental Factors Influence the Concentration of Fecal Indicator Bacteria in Groundwater? Insights from Explanatory Modeling in Uganda and Bangladesh. Environmental Science & Technology, 54(21), 13566–13578. https://doi.org/10.1021/acs.est.0c02567;
  • Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M.-H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. https://doi.org/10.1038/s41586-018-0123-1
  • Rodríguez-Lado, L., Sun, G., Berg, M., Zhang, Q., Xue, H., Zheng, Q., & Johnson, C. A. (2013). Groundwater Arsenic Contamination Throughout China. Science, 341(6148), 866 LP – 868. https://doi.org/10.1126/science.1237484;
  • Scanlon, B. R., Zhang, Z., Reedy, R. C., Pool, D. R., Save, H., Long, D., Chen, J., Wolock, D. M., Conway, B. D., & Winester, D. (2015). Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resources Research, 51(12), 9891–9903. https://doi.org/10.1002/2015WR018090
  • Stackelberg, P. E., Barbash, J. E., Gilliom, R. J., Stone, W. W., & Wolock, D. M. (2012). Regression models for estimating concentrations of atrazine plus deethylatrazine in  shallow groundwater in agricultural areas of the United States. Journal of Environmental Quality, 41(2), 479–494. https://doi.org/10.2134/jeq2011.0200;
  • Taghadosi, M. M., Hasanlou, M., & Eftekhari, K. (2019). Retrieval of soil salinity from Sentinel-2 multispectral imagery. European Journal of Remote Sensing, 52(1), 138–154. https://doi.org/10.1080/22797254.2019.1571870;
  • Wu, R., Podgorski, J., Berg, M., & Polya, A. (2020). Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00655-7

Opportunities to use Citizen Science to monitor groundwater quality

  • San Llorente Capdevila, A., Kokimova, A., Sinha Ray, S., Avellán, T., Kim, J., & Kirschke, S. (2020). Success factors for citizen science projects in water quality monitoring. The Science of the Total Environment, 728, 137843. https://doi.org/10.1016/j.scitotenv.2020.137843
  • Baalbaki, R., Ahmad, S. H., Kays, W., Talhouk, S. N., Saliba, N. A., & Al-Hindi, M. (2019). Citizen science in Lebanon—a case study for groundwater quality monitoring. Royal Society Open Science, 6(2), 181871. https://doi.org/10.1098/rsos.181871;
  • Graham, M., & Taylor, J. (2018). Development of Citizen Science Water Resource Monitoring Tools and Communities of Practice for South Africa, Africa and the World (p. 167). http://www.wrc.org.za/wp-content/uploads/mdocs/TT 763 web.pdf;
  • WES NET INDIA. (2006). Community - Based Water Quality Monitoring & Surveillance, from UNICEF, Kolkata (Experiences);
  • Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De Bièvre, B., Bhusal, J., Clark, J., Dewulf, A., Foggin, M., Hannah, D. M., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., … Zhumanova, M. (2014). Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Frontiers in Earth Science, 2, 26. https://doi.org/10.3389/feart.2014.00026; and 
  • Graham, M., & Taylor, J. (2018). Development of Citizen Science Water Resource Monitoring Tools and Communities of Practice for South Africa, Africa and the World (p. 167). http://www.wrc.org.za/wp-content/uploads/mdocs/TT 763 web.pdf